Hierarchically Porous and Minimally Stacked Graphene Cathodes for High‐Performance Lithium–Oxygen Batteries

Author:

Yu Wei1ORCID,Shen Zhaohan2,Yoshii Takeharu2,Iwamura Shinichiroh13,Ono Manai4,Matsuda Shoichi45,Aoki Makoto6,Kondo Toshihiro6,Mukai Shin R.7,Nakanishi Shuji89,Nishihara Hirotomo12ORCID

Affiliation:

1. Advanced Institute for Materials Research (WPI‐AIMR) Tohoku University Sendai 980‐8577 Japan

2. Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai 980‐8577 Japan

3. 3DC Inc. Sendai 980‐8577 Japan

4. Center for Green Research on Energy and Environmental Materials National Institute for Material Science Tsukuba Ibaraki 305‐0044 Japan

5. NIMS‐SoftBank Advanced Technologies Development Center National Institute for Material Science Tsukuba Ibaraki 305‐0044 Japan

6. Graduate School of Humanities and Sciences Ochanomizu University Tokyo 112‐8610 Japan

7. Faculty of Engineering Hokkaido University Sapporo 060‐6828 Japan

8. Research Center for Solar Energy Chemistry Graduate School of Engineering Science Osaka University Toyonaka Osaka 560‐8531 Japan

9. Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS‐OTRI) Osaka University Suita Osaka 565‐0871 Japan

Abstract

AbstractAlthough lithium–oxygen batteries have attracted attention due to their extremely high energy densities, rational design, and critical evaluation of high‐energy‐density cathode for practical Li–O2 batteries is still urgently needed. Herein, the multiscale, angstrom‐to‐millimeter, precisely controllable synthesis of binder‐free cathodes with minimally stacked graphene free from edge sites is demonstrated. The proposed Li–O2 battery, based on a hierarchically porous cathode with a practical mass loading of >4.0 mg cm−2, simultaneously exhibits an unprecedented specific areal (>30.0 mAh cm−2), mass (>6300 mAh g−1), and volumetric (>480 mAh cm−3) capacities. The battery displays the optimal energy density of 793 Wh kg−1 critically normalized to the total mass of all active materials including electrolytes and even discharge products Li2O2. Comprehensive in situ characterizations demonstrate a unique discharge mechanism in hierarchical pores which contributes to competitive battery performance. Superior rate performance in a current density range of 0.1 to 0.8 mA cm−2 and long‐cycle stability (>260 cycles) at a current density of 0.4 mA cm−2, outperforming state‐of‐the‐art carbon cathodes. This study yields insight into next‐generation carbon cathodes, not only for use in practical Li–O2 batteries, but also in other metal–gas batteries with high energy densities.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3