Electronic and Lattice Engineering of Ruthenium Oxide towards Highly Active and Stable Water Splitting

Author:

Hou Liqiang1,Li Zijian2,Jang Haeseong3,wang Yu1,Cui Xuemei1,Gu Xiumin1,Kim Min Gyu4,Feng Ligang5,Liu Shangguo1,Liu Xien1ORCID

Affiliation:

1. College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. Department of Chemistry City University of Hong Kong Hong Kong SAR 999077 P. R. China

3. Department of Advanced Materials Engineering Chung‐Ang University Seoul 156‐756 South Korea

4. Beamline Research Division Pohang Accelerator Laboratory (PAL) Pohang 790‐784 South Korea

5. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China

Abstract

AbstractThe development of efficiently active and stable bifunctional noble‐metal‐based electrocatalysts toward overall water splitting is urgent and challenging. In this work, a rutile‐structured ruthenium‐zinc solid solution oxide with oxygen vacancies (Ru0.85Zn0.15O2‐δ) is developed by a simple molten salt method. With naturally abundant edges of ultrasmall nanoparticles clusters, Ru0.85Zn0.15O2‐δ requires ultralow overpotentials, 190 mV for acidic oxygen evolution reaction (OER) and 14 mV for alkaline hydrogen evolution reaction (HER), to reach 10 mA cm−2. Moreover, it shows superior activity and durability for overall water splitting in different electrolytes. Experimental characterizations and density functional theory calculations indicate that the incorporation of Zn and oxygen vacancies can optimize the electronic structure of RuO2 by charge redistribution, which dramatically suppresses the generation of soluble Rux>4 and allows optimized adsorption energies of oxygen intermediates for OER. Meanwhile, the incorporation of Zn can distort local structure to activate the dangling O atoms on the distorted Ru0.85Zn0.15O2‐δ as proton acceptors, which firmly bonds the H atom in H2O* to stabilize the H2O and considerably improves the HER activity.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3