Beyond Protocols: Understanding the Electrical Behavior of Perovskite Solar Cells by Impedance Spectroscopy

Author:

Ghahremanirad Elnaz1ORCID,Almora Osbel23ORCID,Suresh Sunil1,Drew Amandine A.1,Chowdhury Towhid H.1ORCID,Uhl Alexander R.1ORCID

Affiliation:

1. Laboratory for Solar Energy and Fuels (LSEF) School of Engineering The University of British Columbia Kelowna V1V1V7 Canada

2. Department of Electrical Electronic and Automatic Engineering Universitat Rovira i Virgili Tarragona 43007 Spain

3. Institute of Advanced Materials Universitat Jaume I Castelló 12006 Spain

Abstract

AbstractImpedance spectroscopy (IS) is an effective characterization technique used to probe and distinguish charge dynamics occurring at different timescales in optoelectronic and electric devices. With the rapid rise of research being conducted on perovskite solar cells (PSCs), IS has significantly contributed to the understanding of their device performance and degradation mechanisms, including metastable effects such as current–voltage hysteresis. The ionic–electronic behavior of PSCs and the presence of a wide variety of perovskite compositions and cell architectures add complexity to the accurate interpretation of the physical processes occurring in these devices. In this review, the most common IS protocols are explained to help perform accurate impedance measurements on PSC devices. It critically reviews the most commonly used equivalent circuits alongside drift‐diffusion modeling as a complementary technique to analyze the impedance response of PSCs. As an emerging method for characterizing the interfacial recombination between the perovskite layer and selective contacts, light intensity modulated impedance spectroscopy technique is further discussed. Lastly, important works on the application of IS measurement protocols for PSCs are summarized followed by a detailed discussion, providing a critical perspective and outlook on the growing topic of IS on PSCs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3