Construction of Hierarchical Surface on Carbon Fiber Paper for Lithium Metal Batteries with Superior Stability

Author:

Lee Youn‐Ki12,Cho Ki‐Yeop2,Lee Sora1,Choi Jiho1,Lee Gwanwon13,Joh Han‐Ik3,Eom KwangSup2,Lee Sungho14ORCID

Affiliation:

1. Carbon Composite Materials Research Center Korea Institute of Science and Technology (KIST) 92 Chundong‐ro, Bongdong‐eup Wanju‐gun Jeollabuk‐do 55324 Republic of Korea

2. School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi‐ro, Buk‐gu Gwangju 61005 Republic of Korea

3. Department of Energy Engineering Konkuk University 120 Neungdong‐ro, Gwangjin‐gu Seoul 05029 Republic of Korea

4. Department of Quantum System Engineering Jeonbuk National University 567 Baekje‐ro, Deokjin‐gu Jeonju‐si Jeonbuk 54896 Republic of Korea

Abstract

AbstractLithium is perceived as an ideal anode for next generation batteries with high‐energy density. However, the critical issue of the intractable growth of Li dendrites, which leads to a poor cycling life, still remains. Herein, a hierarchical surface is designed and constructed on carbon fiber (CF) using binders in fabricated CF paper (CFP). The lightweight CF with high mechanical properties is facilitated to establish a 3D network structure as an alternative to Cu foil. The binders are transformed into oxygen‐containing amorphous carbon and sodium carbonate (Na2CO3) using a low‐temperature carbonization process, leading to uniform Li nucleation and a stable solid electrolyte interphase layer with inorganic components. In the electrochemical test, the CFP with amorphous carbon and Na2CO3 (ANCFP) shows a low Li nucleation overpotential and smooth dendrite‐free Li plating. Furthermore, the ANCFP electrode exhibits good cycling stability in half and symmetrical cells. A full‐cell assembled using a LiFePO4 cathode with high loading (≈13 mg cm−2) achieves a high‐energy density of 428 Wh kg−1 (at 0.1 C) and an excellent capacity retention of 85% at 1 C after 300 cycles. This strategy is expected to help realize highly stable Li metal anodes for practical application by suppressing Li dendrite growth.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3