Enabling and Boosting Preferential Epitaxial Zinc Growth via Multi‐Interface Regulation for Stable and Dendrite‐Free Zinc Metal Batteries

Author:

Wang Yangyang1,Ren Tiantian1,Wang Zeping1,Liu Chengxin1,Zhang Yuhang1,Xu Ao1,Chen Chunxia1,Bai Jinbo2,Wang Hui1,Liu Xiaojie1ORCID

Affiliation:

1. Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China

2. Laboratoire Mécanique des Sols Structures et Matériaux (MSSMat) CNRS UMR 8579 Ecole CentraleSupélec Université Paris‐Saclay 8–10 rue Joliot‐Curie Gif‐sur‐Yvette 91190 France

Abstract

AbstractThe practical application of aqueous Zn‐metal anodes (AZMAs) is mainly impeded by the short cycling life and unsatisfactory reversibility springing from the notorious Zn dendrite growth and detrimental water‐induced parasitic reactions at anode‐electrolyte interface. To tackle these challenges, a multifunctional interface of Sn‐modified Ti3C2Cl2 MXene (denoted as Sn‐MXene) with high zincophilic and hydrophobic properties is rationally designed via a 1‐step strategy with a novel molten salt etching to achieve dendrite‐free Zn deposition. Experimental results and theoretical calculations reveal that the Sn nanoparticles can induce a strongly zincophilic surface with high Zn2+ adsorption, and the Ti3C2Cl2 MXene significantly decreases the surface energy of the Zn (002) plane, guiding the zinc‐preferred orientation along the (002) plane in the electroplating growth process. Moreover, the hydrophobic properties of ‐Cl terminations of the protective interface for the Zn anode can regulate Zn‐ion solvation structure to mitigate H2O‐decomposition‐induced side reactions, and guarantee a steady stream of Zn2+ flux. Encouragingly, benefiting from the Sn‐MXene layer, a side reaction‐free and dendrite‐free Zn anode with an excellent lifespan is achieved, which is further applied as an anode for full battery (Sn‐MXene‐Zn//α‐MnO2) with a long‐term span over 800 cycles under 1 A g–1 with a capacity retention of 96%.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3