Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Micro‐Supercapacitor

Author:

Jrondi Aiman123,Buvat Gaetan123,Pena Francisco De La4,Marinova Maya5,Huvé Marielle2,Brousse Thierry36,Roussel Pascal2,Lethien Christophe137ORCID

Affiliation:

1. Institut d'Electronique de Microélectronique et de Nanotechnologies Université de Lille CNRS Université Polytechnique Hauts‐de‐France UMR 8520—IEMN Lille F‐59000 France

2. Unité de Catalyse et de Chimie du Solide (UCCS) Université de Lille CNRS Centrale Lille Université d'Artois UMR 8181—UCCS Lille F‐59000 France

3. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) CNRS FR 3459, 33 rue Saint Leu Amiens Cedex 80039 France

4. Unité Matériaux et Transformations Université de Lille CNRS UMR 8207 Lille France

5. Université de Lille CNRS INRAE Centrale Lille IMEC—Institut Michel‐Eugène Chevreul Université d'Artois, FR 2638 Lille F‐59000 France

6. Nantes Université CNRS Institut des Matériaux de Nantes Jean Rouxel IMN Nantes F‐44000 France

7. Institut Universitaire de France (IUF) Saint‐Michel 103 Paris 75005 France

Abstract

AbstractVanadium nitride film made using a thin film deposition technique is a promising electrode material for micro‐supercapacitor applications owing to its high electrical conductivity and high volumetric and surface capacitance values in aqueous electrolyte. Nevertheless, the cycling stability has to be improved to deliver good capacitance during a large number of cycles. Here, it is shown that vanadium nitride films made by a magnetron sputtering deposition method exhibit remarkable cycling stability (high capacitance retention value after 150 000 cycles), ultra‐high rate capability (75% of the initial capacitance at 1.6 V s−1), while providing high surface capacitance values (≈1.4 F cm−2) and very low ageing of the VN electrodes (no loss of performance after 13 months). Additionally, new findings regarding the location of vanadium oxides species responsible for the charge storage mechanism in pseudocapacitive VN films are revealed by transmission electron microscopy electron energy‐loss spectroscopy analyses at the nanoscale.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3