Active Material‐Free Continuous Carbon Nanotube Fibers with Unprecedented Enhancement of Physicochemical Properties for Fiber‐Type Solid‐State Supercapacitors

Author:

Yu Hayoung1ORCID,Kim Jeong‐Gil12,Lee Dong‐Myeong13,Lee Sungju12,Han Min Gook14,Park Ji‐Woon1,Kim Seung Min1ORCID,Kim Nam Dong1ORCID,Jeong Hyeon Su1ORCID

Affiliation:

1. Institute of Advanced Composite Materials Korea Institute of Science and Technology(KIST) 92 Chudong ro, Bondong‐eup, Wanju‐gun Jeonbuk 55324 Republic of Korea

2. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology(KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

3. R&D Campus LG Chem 188 Munji‐ro, Yuseong‐gu Daejeon 34122 Republic of Korea

4. School of Chemical Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 Republic of Korea

Abstract

AbstractFiber‐type solid‐state supercapacitors (FSSCs) are gaining traction as wearable energy storage devices, given their adaptability akin to traditional fibers. Carbon nanotube fibers (CNTFs) generated via a liquid crystalline (LC) wet‐spinning process demonstrate outstanding electrical conductivity, mechanical strength, and flexibility. However, their intrinsic “defect‐free” sp2 carbon surface restricts immediate FSSC application, limited by lower specific surface area and scant pseudocapacitive sites. This study develops LC‐spun CNTFs with inherent electrochemical activity, eliminating the need for post‐processing or additional active materials, a requirement typically essential in most previous research. This advancement arises from the wet‐spinning of functionalized CNTs from a LC solution with an exceptionally high concentration of 160 mg mL−1, facilitated by the manipulation of the LC phase transition range. The resultant CNTFs exhibit a refined internal structure, yielding an electrical conductivity of 1.9 MS m−1 and a mechanical strength of 0.93 GPa. Simultaneously, they demonstrate inherent electrical energy storage capabilities with a specific capacitance of 139.4 F g−1 and a volumetric capacitance of 192.4 F cm−3 at 0.5 A g−1. This innovation signifies a step forward in the potential for mass production without the burden of additional materials and steps.

Funder

Korea Institute of Science and Technology

National Research Foundation of Korea

Hyundai Motor Group

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3