High Open‐Circuit Voltage (1.197 V) in Large‐Area (1 cm2) Inverted Perovskite Solar Cell via Interface Planarization and Highly Polar Self‐Assembled Monolayer

Author:

Sun Anxin1,Tian Congcong1,Zhuang Rongshan12,Chen Chen3,Zheng Yiting1,Wu Xueyun1,Tang Chen1,Liu Yuan1,Li Zihao1,Ouyang Beilin1,Du Jiajun1,Li Ziyi1,Cai Jingyu1,Chen Jinling1,Wu Xiling1,Hua Yong2,Chen Chun‐Chao1ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China

2. Yunnan Key Laboratory for Micro/Nano Materials & Technology School of Materials and Energy Yunnan University Kunming 650091 P. R. China

3. Future Energy Research Institute of Shanghai Contemporary Amperex Technology Co. Limited (CATL) Shanghai 200240 P. R. China

Abstract

AbstractThe efficiency loss caused by area scaling is one of the key factors hindering the industrial development of perovskite solar cells. The energy loss and contact issues in the buried interface are the main reasons. Here, a new self‐assembled monolayer (SAM), Ph‐4PACz, with a large dipole moment (2.32 D) is obtained . It is found that Ph‐4PACz with high polarity can improve the band alignment and minimize the energy loss , resulting in an open‐circuit voltage (Voc) as high as 1.2 V for 1.55 eV perovskite. However, when applied to large‐area devices, the fill factor (FF) still suffered from significant attenuation. Therefore, alumina nanoparticles (Al2O3‐NPs) are introduced to the interface between Ph‐4PACz and rough FTO substrate to further improve the flatness , resulting in a conformal perovskite film with almost no voids in the buried interface, thus promoting low exciton binding energy, fast hot‐carrier extraction and low non‐radiative recombination. The final devices achieved a small‐area power conversion efficiency (PCE) of 25.60% and a large‐area (1 cm2) PCE of 24.61% (certified at 24.48%), which represents one of the highest PCE for single device ≥ 1 cm2 area. Additionally, mini‐modules and stability testing are also carried out to demonstrate the feasibility of commercialization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3