Coordination Engineering of N, O Co‐Doped Cu Single Atom on Porous Carbon for High Performance Zinc Metal Anodes

Author:

Lee Kyungbin1ORCID,Kim Eun Ji2ORCID,Kim Jaekyum3,Kim Keun Hee1,Lee Young Jun4,Lee Michael J.15ORCID,Ryu Kun1,Shin Sangyong2,Choi Jaeyoung2,Kwon Seung Ho2,Lee Hyunjoo2,Kim Jung Kyu3,Kim Byung‐Hyun6ORCID,Kim Bumjoon J.2,Lee Seung Woo1ORCID

Affiliation:

1. George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332 USA

2. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

3. School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangsan‐gu Suwon 16419 Republic of Korea

4. Carbon Composite Materials Research Center Korea Institute of Science and Technology (KIST) 92 Chudong‐ro, Bongdong‐eup, Wanju gun Jeollabuk‐do 55324 Republic of Korea

5. Department of Mechanical Engineering, College of Engineering Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 17104 Republic of Korea

6. Department of Chemical and Molecular Engineering Department of Applied Chemistry Center for Bionano Intelligence Education and Research Hanyang University ERICA 55 Hanyangdaehak‐ro, Sangnok‐gu, Ansan‐si Gyeonggi‐do 15588 Republic of Korea

Abstract

AbstractTraditional challenges of poor cycling stability and low Coulombic efficiency in Zinc (Zn) metal anodes have limited their practical application. To overcome these issues, this work introduces a single metal‐atom design featuring atomically dispersed single copper (Cu) atoms on 3D nitrogen (N) and oxygen (O) co‐doped porous carbon (CuNOC) as a highly reversible Zn host. The CuNOC structure provides highly active sites for initial Zn nucleation and further promotes uniform Zn deposition. The 3D porous architecture further mitigates the volume changes during the cycle with homogeneous Zn2+ flux. Consequently, CuNOC demonstrates exceptional reversibility in Zn plating/stripping processes over 1000 cycles at 2 and 5 mA cm−2 with a fixed capacity of 1 mAh cm−2, while achieving stable operation and low voltage hysteresis over 700 h at 5 mA cm−2 and 5 mAh cm−2. Furthermore, density functional theory calculations show that co‐doping N and O on porous carbon with atomically dispersed single Cu atoms creates an efficient zincophilic site for stable Zn nucleation. A full cell with the CuNOC host anode and high loading V2O5 cathode exhibits outstanding rate‐capability up to 5 A g−1 and a stable cycle life over 400 cycles at 0.5 A g−1.

Funder

National Science Foundation

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3