Ru2P/Ir2P Heterostructure Promotes Hydrogen Spillover for Efficient Alkaline Hydrogen Evolution Reaction

Author:

Hong Yongju12ORCID,Jeong Sangyeon1ORCID,Seol Jae Hun3,Kim Taekyung4ORCID,Cho Seong Chan3,Lee Tae Kyung2,Yang Chaeyoen2,Baik Hionsuck4ORCID,Park Hyun S.25,Lee Eunsoo1,Yoo Sung Jong256ORCID,Lee Sang Uck3ORCID,Lee Kwangyeol1ORCID

Affiliation:

1. Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul 02841 Republic of Korea

2. Hydrogen·Fuel Cell Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea

3. School of Chemical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

4. Korea Basic Science Institute (KBSI) Seoul 02841 Republic of Korea

5. KHU‐KIST Department of Converging Science and Technology Kyung Hee University Seoul 02447 Republic of Korea

6. Division of Energy & Environment Technology KIST School University of Science and Technology (UST) Seoul 02792 Republic of Korea

Abstract

AbstractEfficient and durable electrocatalysts toward alkaline hydrogen evolution reaction (HER) are of great significance for the widespread application of anion‐exchange membrane water electrolyzer (AEMWE). Numerous single‐phase catalysts, such as Ru2P, have been explored as efficient HER catalysts; however, many have failed to overcome the inherent sluggish kinetics of the two separate steps involved in the alkaline HER: water dissociation and hydrogen production. In this study, density functional theory calculations are conducted to identify promising combinations of Ir2P and Ru2P materials that promote fast cascade water dissociation and H2 production via kinetically favorable hydrogen spillover from the Ru2P surface to the adjacent Ir2P. An unprecedented construction of Ir2P cluster‐decorated Ru2P hollow nanotubes (c‐RP/IP HNTs), which feature a cooperative heterostructural synergy are developed. This configuration shows greater performance than commercial Pt/C, achieving an overpotential of 23.2 mV at 10 mA cm2 and maintaining long‐term stability for 55 h in half‐cell tests. Furthermore, the practical AEMWE test, incorporating c‐RP/IP HNTs, demonstrated a remarkable single‐cell performance of 12.23 A cm−2 at 2.0 V and operated stably under 1.0 A cm−2 for over 250 h. This surpasses that of the state‐of‐the‐art proton‐exchange membrane WE.

Funder

National Research Foundation of Korea

Korea Basic Science Institute

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3