SnSe2/NiSe2@N‐Doped Carbon Yolk‐Shell Heterostructure Construction and Selenium Vacancies Engineering for Ultrastable Sodium‐Ion Storage

Author:

Li Huan1,He Yanyan12,Wang Qian1,Gu Shaonan1,Wang Lu3,Yu Juxin1,Zhou Guowei1,Xu Liqiang3ORCID

Affiliation:

1. Key Laboratory of Fine Chemicals in Universities of Shandong Jinan Engineering Laboratory for Multi‐scale Functional Materials School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China

2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

3. Key Laboratory of Colloid and Interface Chemistry School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China

Abstract

AbstractTin diselenide, a promising anode material for sodium ion batteries (SIBs), still faces sluggish Na+ diffusion kinetics and severe volume change, resulting in undesirable cycling stability and rate capability. Heterostructure construction is an effective strategy for boosting Na+ storage of SnSe2. Herein, an appealing yolk‐shell nanostructure of SnSe2/NiSe2 heterointerface with rich Se vacancies embedded into N‐doped carbon (SnSe2/NiSe2@NC) is precisely designed through a facile hydrothermal process followed by a selenization strategy. The experimental studies coupled with theoretical calculations results verify that the heterostructure interfaces and Se vacancies accelerate the charge and Na+ transfer efficiency, improve Na+ adsorption energy and supply ample active sites. The yolk‐shell nanostructure and N‐doped carbon buffer the volume variation and improve the structural stability of the electrode material during sodium storage processes. The SnSe2/NiSe2@NC delivers ultra‐long term cycling stability (322.7 mAh g−1 after 7500 cycles at 3 A g−1) and exceptional rate capability (314.6 mAh g−1 at 10 A g−1). The Na‐ion storage mechanism of SnSe2/NiSe2@NC is explored through in situ X‐ray diffraction and ex situ high‐resolution transmission electron microscopy analysis. The present work provides an effective avenue to the rational design of heterostructure anode materials for high efficiency SIBs.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3