Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction

Author:

Yue Caizhen12,Yang Xiaobo2,Zhang Xiong2,Wang Shifu2,Xu Wei34,Chen Ruru2,Wang Jiuyi2,Yin Jie1,Huang Yanqiang2,Li Xuning2ORCID

Affiliation:

1. School of Materials Science and Engineering Liaocheng University Liaocheng 252000 P. R. China

2. State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China

3. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Beijing 100049 P.R. China

4. RICMASS Rome International Center for Materials Science Superstripes Via dei Sabelli 119A Roma 00185 Italy

Abstract

AbstractThe regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3