Design Principles for Grain Boundaries in Solid‐State Lithium‐Ion Conductors

Author:

Quirk James A.1,Dawson James A.12ORCID

Affiliation:

1. Chemistry—School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK

2. Centre for Energy Newcastle University Newcastle upon Tyne NE1 7RU UK

Abstract

AbstractLithium dendrite formation and insufficient ionic conductivity remain primary concerns for the utilization of solid‐state batteries. Given that the interpretation of experimental results for polycrystalline solid electrolytes can be difficult, computational techniques are invaluable for providing insight at the atomic scale. Here, first‐principles calculations are carried out on representative grain boundaries in four important solid electrolytes, namely, an anti‐perovskite oxide, Li3OCl, and its hydrated counterpart, Li2OHCl, a thiophosphate, Li3PS4, and a halide, Li3InCl6, to develop the first generally applicable design principles for grain boundaries in solid electrolytes for solid‐state batteries. The significantly different impacts that grain boundaries have on electronic structure and transport, ion conductivity and correlated ion dynamics are demonstrated. The results show that even when grain boundaries do not significantly impact ionic conductivity, they can still strongly perturb the electronic structure and contribute to potential lithium dendrite propagation. It is also illustrated, for the first time, how correlated motion, including the so‐called paddle‐wheel mechanism, can vary substantially at grain boundaries. These findings reveal the dramatically different behavior of solid electrolytes at the microscale compared to the bulk and its potential consequences and benefits for the design of solid‐state batteries. These design principles are expected to aid the synthesis and engineering of solid electrolytes at the microscale for preventing dendrite propagation and accelerating ion transport.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3