Multiphase Coherent Nanointerface Network Enhances Thermoelectric Performance for Efficient Energy Conversion and Contactless Thermosensation Applications in GeTe

Author:

Zhu Jianglong1ORCID,Tan Xiaobo1,Hong Min2,Wei Yanxing34,Ma Huangshui34,Feng Fan1,Luo Yuange1,Wu Hao5,Sun Qiang34,Ang Ran16ORCID

Affiliation:

1. Key Laboratory of Radiation Physics and Technology Ministry of Education Institute of Nuclear Science and Technology Sichuan University Chengdu 610064 China

2. Centre for Future Materials University of Southern Queensland Springfield Campus QLD 4300 Australia

3. State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China

4. Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China

5. Department of Stomatology the First Medical Centre Chinese PLA General Hospital Beijing 100853 China

6. Institute of New Energy and Low‐Carbon Technology Sichuan University Chengdu 610065 China

Abstract

AbstractCounter doping is a prevalent strategy to optimize the excessively high carrier concentration in GeTe, while it may impair carrier transport and reduce mobility, thereby limiting the potential to improve ZT. Herein, a novel approach to overcome this challenge is proposed. A multiphase coherent nanointerface network, formed between pseudo‐cubic GeTe, Cu2Te, and PbTe phases, with effective Cu ions delocalization, has been realized in Cu2Te alloyed Ge0.84Cd0.06Pb0.10Te. This design selectively modulates both charge carrier and phonon transport, resulting in increased mobility and optimized carrier concentration that contribute to enhanced power factor, with an ultra‐low lattice thermal conductivity of ≈0.33 W m−1 K−1 at 653 K. Consequently, the peak ZT of ≈2.22 at 803 K and average ZT of ≈1.40 from 303 to 803 K is achieved in (Ge0.84Cd0.06Pb0.10Te)0.99(Cu2Te)0.01. Furthermore, the novel structural modulation results in robust mechanical properties. Utilizing these optimized materials, achieving a high power density of ≈1.47 W cm−2 at a temperature difference of 400 K in the fabricated 7‐pair thermoelectric module. Moreover, a thermoelectric energy harvesting array device is assembled, exhibiting potential for applications in non‐radiative energy harvesting from lasers and touchless thermosensation, further advancing the applications of thermoelectric materials and devices.

Funder

National Key Research and Development Program of China

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3