Affiliation:
1. College of Photoelectric Engineering Chongqing University Chongqing 400044 China
2. Department of Physics and Astronomy College of Sciences King Saud University Riyadh 11451 Saudi Arabia
3. Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
4. College of Information Science and Engineering Yanshan University Qinhuangdao 066004 China
Abstract
AbstractInverted perovskite solar cells (PSCs) comprising formamidinium‐cesium (FA‐Cs) lead triiodide have garnered considerable attention due to their impressive efficiency and remarkable stability. Nevertheless, synthesizing high‐quality FA‐Cs alloyed perovskite films presents challenges, primarily attributable to the intricate interphase process involved and the absence of methylammonium (MA+) and mixed halogens. Here, the additive 3‐phosphonopropanoic acid (3‐PPA) is introduced, with bifunctional phosphonic acid groups, into the perovskite precursor to modulate the crystal growth and provide passivation at grain boundaries. In situ characterization reveals that the 3‐PPA can form a “rapid nucleation, slow growth” mechanism, resulting in perovskite films with enlarged grains and enhanced crystallinity. In addition, 3‐PPA serves to passivate grain boundary defects and release residual strain by forming molecular bridging, leading to the passivated films achieving a fluorescence lifetime of 5.79 microseconds with a favorable n‐type contact interface. As a result, the resulting devices incorporating 3‐PPA achieve a champion power conversion efficiency (PCE) of 24.05% and an ultra‐high fill factor (FF) of 84.22%. More importantly, the optimized devices exhibit satisfactory stability under various testing conditions. The findings underscore the pivotal role of multifunctional additives in crystallization control and defect passivation for high‐performance MA‐free and pure iodine PSCs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Chongqing Municipality
China Postdoctoral Science Foundation
King Saud University
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献