Decoration of NiFe‐LDH Nanodots Endows Lower Fe‐d Band Center of Fe1‐N‐C Hollow Nanorods as Bifunctional Oxygen Electrocatalysts with Small Overpotential Gap

Author:

Liu Zheng‐Qi1,Liang Xiongyi23,Ma Fei‐Xiang1,Xiong Yu‐Xuan1,Zhang Guobin4,Chen Guanhua23,Zhen Liang15,Xu Cheng‐Yan15ORCID

Affiliation:

1. Sauvage Laboratory for Smart Materials School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China

2. Hong Kong Quantum AI Lab Hong Kong SAR 999077 China

3. Department of Chemistry The University of Hong Kong Pok Fu Lam Road Hong Kong SAR 999077 China

4. Institute of Materials Research Tsinghua Shenzhen International Graduate School Shenzhen 518055 China

5. MOE Key Laboratory of Micro‐Systems and Micro‐Structures Manufacturing Harbin Institute of Technology Harbin 150080 China

Abstract

AbstractSingle‐atom Fe‐N‐C (denoted as Fe1‐N‐C) catalysts exhibit inadequate bifunctional activities to conquer the sluggish oxygen reduction and evolution reaction (ORR/OER), hindering their practical applications in rechargeable Zn‐air batteries (ZABs). Here, by employing Fe1‐N‐C hollow nanorods as ORR‐active support, OER‐active NiFe‐layered double hydroxide (NiFe‐LDH) nanodots are evenly decorated through a spatially confined process to form NiFe‐LDH/Fe1‐N‐C heterostructure hollow nanorods with abundant accessible catalytic sites. The NiFe‐LDH/Fe1‐N‐C heterostructure not only enhances the ORR activity of pristine Fe1‐N‐C but also realizes efficient bifunctional ORR/OER activity in one monolithic catalyst. Theoretical calculations reveal that introducing NiFe‐LDH nanodots results in donation of electrons to the Fe1‐N‐C matrix and thus lowers the Fe‐d band center of the Fe‐N4 sites, dramatically narrowing the energy barriers of the ORR rate‐limiting steps. As a result, NiFe‐LDH/Fe1‐N‐C nanorods deliver remarkable ORR activity with a half‐wave potential of 0.90 V versus reversible hydrogen electrode, surpassing bare Fe1‐N‐C and commercial Pt/C. Impressively, the integrated NiFe‐LDH/Fe1‐N‐C catalysts show outstanding bifunctional performance with a small overpotential gap of only 0.65 V. The liquid‐state ZABs with NiFe‐LDH/Fe1‐N‐C as an air‐cathode catalyst deliver a peak power density of 205 mW cm−2 and long‐term cycling stability of up to 400 h.

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3