Evaluation of ERA5 precipitation and 10‐m wind speed associated with extratropical cyclones using station data over North America

Author:

Chen Ting‐Chen12ORCID,Collet François13ORCID,Di Luca Alejandro1

Affiliation:

1. Département des Sciences de la Terre et de l'atmosphère, Centre Étude et simulation du climat à l'échelle régionale (ESCER) Université du Québec à Montréal Montréal Quebec Canada

2. Institute for Meteorology and Climate Research—Department Troposphere (IMK‐TRO) Karlsruhe Institute of Technology Karlsruhe Germany

3. CECI Université de Toulouse CERFACS/CNRS Toulouse France

Abstract

AbstractWhile the ERA5 reanalysis is commonly utilized in climate studies on extratropical cyclones (ETCs), only a few studies have quantified its ability in the representation of ETCs over land. To address this gap, this study evaluates ERA5's skill in representing the ETC‐associated 10‐m wind speed and the precipitation in central and eastern North America during 2005–2019. Hourly data collected from ~3000 stations, amounting to around 420 million reports stored in the Integrated Surface Database, is used as reference. For the spatial‐averaged ETC properties, ERA5 shows a good skill for wind speed with normalized mean bias (NMB) of −0.7% and normalized root‐mean‐square error (NRMSE) of 14.3%, despite a tendency to overestimate low winds and underestimate high winds. The ERA5 skill is worse for precipitation than for wind speed with NMB of −10.4% and NRMSE of 56.5% and a strong tendency to underestimate high values. For both variables, the best and worst performance is found in DJF and JJA, respectively. Negative biases are often identified over regions with stronger precipitation/wind speeds, and a systematic underestimation of wind speed is found over the Rockies with complex topography. Compared to the averaged ETCs, ERA5's performance deteriorates for the top 5% extreme ETCs with a stronger tendency to underestimate both wind speed and precipitation (NMB of −10.2% and −22.6%, respectively). Furthermore, ERA5's skill is worse for local extreme values within ETCs than for spatial averages. Our results highlight some important limitations of the ERA5 reanalysis products for studies looking at the possible impacts of ETCs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3