Automatic deforestation detectors based on frequentist statistics and their extensions for other spatial objects

Author:

Muren Jesper1ORCID,Niklasson Vilhelm1ORCID,Otryakhin Dmitry1ORCID,Romashin MaximORCID

Affiliation:

1. Department of Mathematics Stockholm University Stockholm Sweden

Abstract

AbstractThis article is devoted to the problem of detection of forest and nonforest areas on Earth images. We propose two statistical methods to tackle this problem: one based on multiple hypothesis testing with parametric distribution families, another one—on nonparametric tests. The parametric approach is novel in the literature and relevant to a larger class of problems—detection of natural objects, as well as anomaly detection. We develop mathematical background for each of the two methods, build self‐sufficient detection algorithms using them and discuss practical aspects of their implementation. We also compare our algorithms with each other and with those from standard machine learning using satellite data.

Publisher

Wiley

Reference36 articles.

1. Anomaly detection using the Kullback-Leibler divergence metric

2. Video Foreground Detection Based on Symmetric Alpha-Stable Mixture Models

3. Centre National d'Etudes Spatiales. (2018).PEPS ‐ Plateforme d'Exploitation des Produits Sentinel.https://peps.cnes.fr

4. Training and testing low‐degree polynomial data mappings via linear SVM;Chang Y.‐W.;Journal of Machine Learning Research,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3