Impacts of sediment transported downstream from the 2015 deep‐seated landslide in Mt. Hakusan, Japan

Author:

Thapa Prakash Singh1ORCID,Daimaru Hiromu1,Ichion Eiji1,Yanai Seiji1

Affiliation:

1. Division of Sciences for Bioproduction and Environment Ishikawa Prefectural University Nonoichi City Japan

Abstract

AbstractA massive landslide occurred in May 2015 in the Mt. Hakusan Sennindani area, leading to the discharge of a substantial amount of sediment into the Tedori River. We conducted a cross‐sectional analysis of secondary data to assess the potential effects of discharged sediments on the downstream environment, including long‐term turbidity in rivers, alterations in fish habitats, and groundwater depletion. To analyse the spatio‐temporal changes in the river floodplain elevation and paddy fields, aerial photographs and airborne light detection and ranging data were assessed using the ArcGIS software. After the landslide, the turbidity of the Tedori River increased and continued flowing turbid for approximately 6 months. Turbid water spread in the alluvial fan through the irrigation canal network and sediment was deposited in the paddy fields, leading to a reduction in infiltration rates. The groundwater level in the alluvial fan area decreased by more than 2.0 m following the 2015 Sennindani landslide. The sediment deposition in the river floodplain increased by 0.58 m from 2013 to 2015 (pre‐ and post‐landslide). The sediment from upstream destroyed the spawning sites of the Ayu fish along the Tedori River, leading to a decrease in the number of eggs laid in 2015 and 2016 to the lowest levels. The Tomiyo fish disappeared in 2016 and 2017, downstream of the alluvial fan, which received water recharge from the Tedori River. Moreover, Chum salmon showed an exceptionally high anadromous movement towards the Tedori River from coastal areas during 2015 and 2016. In conclusion, discharged sediment from deep upstream landslides can have various adverse impacts on downstream ecosystems, and recovery to their original state may require a considerable amount of time.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3