Technical note: Computational study on thermal management schemes for tumor‐treating fields therapy

Author:

Yang Xin1,Hu Chunhua1,Li Luming123

Affiliation:

1. National Engineering Research Centre of Neuromodulation, School of Aerospace Engineering Tsinghua University Beijing China

2. IDG/McGovern Institute for Brain Research at Tsinghua University Beijing China

3. Changping Laboratory Beijing China

Abstract

AbstractBackgroundThe study focuses on thermal management in tumor‐treating fields (TTFields) therapy, crucial for patient compliance and therapeutic effectiveness. TTFields therapy, an established treatment for glioblastoma, involves applying alternating electric fields to the brain. However, managing the thermal effects generated by electrodes is a major challenge, impacting patient comfort and treatment efficiency.PurposeThis research aims to explore methods for controlling temperature increases during TTFields therapy without reducing its duty cycle. The study emphasizes optimizing electrode configurations and array arrangements to mitigate temperature rise, thereby maintaining therapy effectiveness and patient compliance.MethodsUsing a simplified multi‐layer tissue model and finite element analysis, various electrode configurations and array shapes were tested in COMSOL Multiphysics v6.0. Adjustments included changing the electrode gel layer radius from 8 to 12 mm, electrode spacing, and transitioning to a more uniform array arrangement, such as a square array or a circular array.ResultsThe study revealed a strong correlation between high temperatures and edge current density distributions on electrodes. It was found that increasing the electrode gel layer's diameter, enlarging electrode spacing, and adopting a uniform array arrangement markedly mitigated temperature rises. By increasing the gel layer radius from the original 10 to 12 mm, a reduction in the peak temperature increases of approximately 0.3°C was observed. Changing the layout from rectangular to circular with the same area further reduced the peak temperature rise by 0.5°C. Additionally, enlarging the spacing between electrodes also contributed to temperature control. By integrating these strategies, we designed a new circular electrode array with an electrode spacing of 45 mm and a gel radius of 12 mm, successfully reducing the peak temperature from 42.1°C to 40.8°C, effectively achieving temperature control.ConclusionsThe research demonstrates that improving electrode and array configurations can effectively manage temperature in TTFields therapy without compromising treatment duration. This strategy is crucial as TTFields therapy relies on prolonged field exposure for effectiveness. The findings offer valuable insights into thermal management in electrode array design and could lead to enhanced patient compliance and treatment efficacy in TTFields therapy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3