Evaluation of modified atmosphere packaging system developed through breathable technology to extend postharvest life of fresh muscadine berries

Author:

Khalil Uzman12ORCID,Rajwana Ishtiaq A.1,Razzaq Kashif1ORCID,Singh Shehbaz3,Sarkhosh Ali2ORCID,Brecht Jeffrey K.2ORCID

Affiliation:

1. Department of Horticulture MNS‐University of Agriculture Multan Pakistan

2. Horticultural Sciences Department University of Florida Gainesville Florida USA

3. Curation Foods Inc. Santa Maria California USA

Abstract

AbstractMuscadine grapes (Vitis rotundifolia Michx.) are delicate in nature with short shelf life. Postharvest technologies like modified atmosphere packaging (MAP) with reduced oxygen (O2) and elevated carbon dioxide (CO2) could increase the postharvest storage life with better quality. In the current experiment, physical and biochemical quality attributes of black and bronze cultivars of muscadine grapes ('Supreme' and 'Granny Val', respectively) were evaluated in active MAP. Fruit were packed in plastic trays, sealed with impermeable film, and CO2 was introduced into the package. The MAP was created by a rigid microperforated plastic patch coated with a proprietary semipermeable resin, which was applied over a hole in the tray; packages with the same size hole without a patch were the control. Fruit were stored at 4°C for 42 days (6 weeks). MAP resulted in significantly lower decay incidence and better retention of fruit firmness for up to 28 days of storage in both cultivars as well as reducing color changes in 'Supreme' fruit. Although MAP did not affect the biochemical quality of muscadine grapes, total antioxidants increased initially and then decreased during storage, irrespective of packaging treatments. A significant linear increase in total phenolic content was also found during storage, regardless of treatments applied. Overall, the results of the current study demonstrate that MAP can be an affective technology to increase storage duration of muscadines with better retention of physical quality, without affecting the biochemical attributes.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3