In‐situ Polymerized Single Lithium‐ion Conducting Binder as an Integrated Strategy for High Voltage LNMO Electrodes

Author:

Olmedo‐González Jorge1ORCID,Guzmán‐González Gregorio2ORCID,Manzo‐Robledo Arturo1ORCID,Ramírez‐Rosales Daniel3,Arellano‐Ahumada Stephany N.3,Vera‐Ramírez Marco A.2,González Ignacio2ORCID,de Guadalupe González‐Huerta Rosa1ORCID,Ramos‐Sanchez Guadalupe4ORCID

Affiliation:

1. Instituto Politécnico Nacional Escuela Superior de Ingeniería Química e Industrias Extractivas UPALM 07738 Mexico City México

2. Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Av. San Rafael Atlixco 186 09340 Mexico City México

3. Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas UPALM 07738 Mexico City México

4. Departamento de Ingeniería de Procesos e Hidráulica Universidad Autónoma Metropolitana-Iztapalapa Av. San Rafael Atlixco 186 09340 Mexico City México

Abstract

AbstractHigh voltage spinel LiNi0.5 Mn1.5O4 (LNMO) is a promising material for next generation lithium‐Ion batteries. However, its reactivity near 5 V possess stability and cycling challenges. In this study, a novel integrated approach is employed using a single lithium‐ion conducting polymer binder (SLICPB) to prevent interactions with reactive anions and create a protective layer against electrolyte decomposition. The proposed SLICPB in‐situ polymerization in the LNMO electrodes simplifies the preparation process, reducing costs. SLICPB properties effectively decrease polarization by concentration. For instance, at a discharge capacity of 68 mAh g−1, the voltage hysteresis difference is 0.31 V, enabling higher capacity at 1 C (a 38 % increase) compared to traditional binder electrodes. Notably, this integrated strategy completely replaces the traditional binder without any need for additives, thus avoiding any extra weight in the electrode preparation. Furthermore, SLICPB properties successfully decreasereactivity and diminish the leaching of Mn2+, as evaluated through differential electrochemical mass spectrometry and electron paramagnetic resonance, respectively.

Funder

United Nations Educational, Scientific and Cultural Organization

Academia Mexicana de Ciencias

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3