Application of Na2CO3 as a Sacrificial Electrode Additive in Na‐ion Batteries to Compensate for the Sodium Deficiency in Na2/3[Fe1/2Mn1/2]O2

Author:

Matsuzaki Masayoshi1,Tatara Ryoichi1,Kubota Kei1,Kuroki Kazutoshi1,Hosaka Tomooki1,Umetsu Kazuteru2,Okada Nobuhiro3,Komaba Shinichi1ORCID

Affiliation:

1. Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan

2. R&D Center Asahi Kasei Europe GmbH Fringsstraße 17 40221 Düsseldorf Germany

3. Energy Solution Laboratory, Corporate Research & Development Asahi Kasei Corporation 2-1 Samejima, Fuji Shizuoka 416-8501 Japan

Abstract

AbstractOwing to their high discharge capacities, P2‐type transition metal layered oxides have attracted attention for use as positive electrode materials in Na‐ion batteries. However, owing to the Na‐deficient compositions of these oxides, additional Na+ must be supplied using a Na‐metal negative electrode to attain a high capacity in a half‐cell configuration. In this study, solid Na2CO3 powder was introduced into the P2−Na2/3Fe1/2Mn1/2O2 composite positive electrode as a sacrificial salt to compensate for the Na deficiency. Na+ was supplied through the electrochemical oxidative decomposition of Na2CO3 during the initial charging process; the decomposition mechanism responsible for this process was investigated in detail. Online electrochemical mass spectrometry confirmed that Na2CO3 was oxidatively decomposed in combination with the decomposition of the ethylene carbonate electrolyte. This reaction produced CO2, wherein the carbon source was derived from both Na2CO3 and the electrolyte. Consequently, Na+ supplementation improved the reversible capacity of the Na‐ion full cell. This study offers practical insights and a mechanistic understanding of the pre‐doping technique for Na‐free negative electrodes. This approach also compensates for the irreversible reductive capacity in a process that can be easily applied to practical sodium‐ and lithium‐ion batteries and capacitors.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3