Mitigating Dissolution to Enhance the Performance of Pillar[5]quinone in Sodium Batteries

Author:

Adil Md.1ORCID,Schmidt Maximilian1ORCID,Vogt Julia23,Diemant Thomas4ORCID,Oschatz Martin235ORCID,Esser Birgit14ORCID

Affiliation:

1. Institute of Organic Chemistry II and Advanced Materials Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

2. Institute for Technical Chemistry and Environmental Chemistry Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany

3. Center for Energy and Environmental Chemistry Jena (CEEC Jena). Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany

4. Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage Helmholtzstraße 11 89081 Ulm Germany

5. Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena) Lessingstraße 12–14 07743 Jena Germany

Abstract

AbstractSodium‐ion batteries using organic electrode materials are a promising alternative to state‐of‐the‐art lithium‐ion batteries. However, their practical viability is hindered by challenges such as a low specific capacity of the organic electrode materials, or their dissolution in the electrolyte. We herein present a double mitigation strategy to enhance the performance of pillar[5]quinone (P5Q) as positive electrode material in sodium batteries. Using 5 m sodium bis(fluorosulfonyl)imide in succinonitrile as highly concentrated electrolyte, as well as encapsulating P5Q in CMK‐3 (Carbon Mesostructured by KAIST with hexagonally ordered rod‐like carbon domains) as templated ordered mesoporous carbon, we achieve a record cycling performance with improved cycling stability even at elevated temperature (40 °C). The P5Q@CMK‐3 composite electrode delivers 430 mAh g−1 specific discharge capacity at 0.2 C rate with 90 % retention over 200 cycles. This corresponds to an energy density of 831 Wh kg−1 (based on P5Q mass) and surpasses previous reports on pillarquinones. When operated at 40 °C, the P5Q@CMK‐3 composite electrodes deliver a specific discharge capacity of 438 mAh g−1 with 88 % capacity retention over 500 cycles (0.02 % per cycle). This study underscores the crucial role the electrolyte plays in advancing organic sodium batteries, offering a promising avenue for the future of sustainable energy technologies.

Funder

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3