Cryolithionite‐Based Pseudocapacitive Electrode for Sustainable Lithium‐ion Capacitors

Author:

Ladenstein Lukas1,Pan Xuexue2,Nguyen Hung Q.3,Knez Daniel4,Philipp Martin1,Kothleitner Gerald4,Redhammer Günther J.5,Abbas Qamar16,Rettenwander Daniel13ORCID

Affiliation:

1. Institute of Chemistry and Technology of Materials Graz University of Technology 8010 Graz Austria

2. Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials Institute of Semiconductors South China Normal University 510631 Guangzhou China

3. Department of Material Science and Engineering NTNU Norwegian University of Science and Technology 7034 Trondheim Norway

4. Graz Centre for Electron Microscopy & Institute of Electron Microscopy and Nanoanalysis Graz University of Technology 8010 Graz Austria

5. Department of Chemistry & Physics of Materials University of Salzburg 5020 Salzburg Austria

6. Institute of Chemistry and Technical Electrochemistry Faculty of Chemical Technology Poznan University of Technology 60-965 Poznan Poland

Abstract

AbstractLithium‐ion insertion/deinsertion in anode at slow rates limits the power performance of energy storage devices. Here, a new pseudocapacitive electrode with high reversible capacity during cycling has been proposed for a lithium‐ion capacitor. The lithium‐fluoride garnet, namely Na3Fe2Li3F12, is obtained via precipitation from an aqueous solution at room temperature using abundant materials and exhibits a high discharge capacity of 746 mAh g−1. After the first charging cycle, the energy is stored via fast pseudocapacitive faradaic reactions which are facilitated by the nanocrystalline transport pathways with no structural modification to the electrode. The high stability window of F‐garnet allows extracting cell voltages of 2.2–3.2 V in a lithium‐ion capacitor where it is coupled with a porous carbon‐based positive electrode, with a high energy efficiency of 93 % maintained for 10000 charge/discharge cycles. This study opens a new research direction concerning pseudocapacitive anode materials for enhancing power performance and even replacing the traditional battery‐like anode materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3