Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA

Author:

Hawbaker Todd J.1ORCID,Henne Paul D.1ORCID,Vanderhoof Melanie K.1ORCID,Carlson Amanda R.2ORCID,Mockrin Miranda H.3ORCID,Radeloff Volker C.2ORCID

Affiliation:

1. U.S. Geological Survey Denver Colorado USA

2. SILVIS Lab, Department of Forest and Wildlife Ecology University of Wisconsin–Madison Madison Wisconsin USA

3. Northern Research Station U.S. Department of Agriculture Forest Service Baltimore Maryland USA

Abstract

AbstractWildfires and housing development have increased since the 1990s, presenting unique challenges for wildfire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have altered risk to homes, or the potential for wildfire to threaten homes. We used a random forests model to predict burn probability in relation to weather variables at 1‐km resolution and monthly intervals from 1990 through 2019 in the Southern Rocky Mountains ecoregion. We quantified risk by combining the predicted burn probabilities with decadal housing density. We then compared the predicted burn probabilities and risk across the study area with observed values and quantified trends. Finally, we evaluated how housing growth and changes in burn probability influenced risk individually and combined. Fires burned 9055 km2 and exposed more than 8500 homes from 1990 to 2019. Observed burned area increased 632% from the 1990s to the 2000s, which combined with housing growth, resulted in a 1342% increase in homes exposed. Increases continued in the 2010s but at lower rates; burned area by 65% and exposure by 32%. The random forests model had excellent fit and high correlation with observations (AUC = 0.88 and r = 0.9). Observed values were within the 95% uncertainty interval for all years except 2016 (burned area) and 2000 (exposure). However, our model overpredicted in years with low observed burned area and underpredicted in years with high observed burned area. Overpredictions in risk resulted in lower rates of change in predicted risk compared with change in observed exposure. Increases in risk between the 1990s and 2000s were primarily due to warmer and drier weather conditions and secondarily because of housing growth. However, increases between the 2000s and 2010s were primarily due to housing growth. Our modeling approach identifies spatial and temporal patterns of wildfire potential and risk, which is critical information to guide decision‐making. Because the drivers behind risk shift over time, strategies to mitigate risk may need to account for multiple drivers simultaneously.

Funder

U.S. Department of the Interior

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3