The Use of Low‐Quality Cotton‐Derived Cellulose Films as Templates for In Situ Conductive Polymer Synthesis as Promising Biomaterials in Biomedical Applications

Author:

Demirci Sahin1,Sahiner Mehtap2,Rumi Shaida S.3,Suner Selin S.1,Abidi Noureddine3,Sahiner Nurettin145ORCID

Affiliation:

1. Department of Chemistry Faculty of Science Canakkale Onsekiz Mart University Terzioglu Campus Canakkale 17100 Turkey

2. Department Bioengineering Faculty of Engineering Canakkale Onsekiz Mart University Terzioglu Campus Canakkale 17100 Turkey

3. Fiber and Biopolymer Research Institute Texas Tech University 1001 E Loop 289 Lubbock TX 79403 USA

4. Department of Ophthalmology Morsani College of Medicine University of South Florida Tampa FL 33612 USA

5. Department of Bioengineering Whitaker College of Engineering Florida Gulf Coast University U. A. Fort Myers FL 33965 USA

Abstract

AbstractHere, the use of cellulose films (CFs) produced from low‐quality cotton is reported as a template for in situ synthesis of well‐known conductive polymers, e.g., polyaniline (PANI) and polypyrrole (PPY) via oxidative polymerization. Three successive monomer loading/polymerization cycles of aniline (ANI) and pyrrole (PY) within CFs as PANI@CF or PPY@CF are carried out to increase the amount of conductive polymer content. The contact angle (CA) for three times ANI and PPY loaded and polymerized CFs as 3PANI@CF and 3PPY@CF are determined as 26.3±2.8 and 42.3±0.6 degrees, respectively. As the electrical conductivity is increased with increased number of conductive polymer synthesis within CF, the higher conductivity values, 3×10−4±8.1×10−5 S.cm−1 and 2.1×10−3±5.8×10−4 S.cm−1, respectively are measured for 3PANI@CF and 3PPY@CF composites. It is found that PANI@CF composites are hemolytic, whereas PPY@CF composites are not at 1 mg mL−1 concentrations. All PPY@CF composites exhibit better biocompatibility than PANI@CF composites on L929 fibroblast cells with more than 70±8% viability at 1 mg of CF‐based conductive polymer composites. Moreover, MIC and MBC values of 3PPY@CF composites for Escherichia coli (ATCC8739) and Staphylococcus aureus (ATCC6538) are determined as 2.5 and 5.0 mg.mL−1, whereas these values are estimated as 5 and 10 mg.mL−1 for Candida albicans (ATCC10231).

Funder

University of South Florida

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3