Potential of Date Palm Fibers (DPFs) as a Sustainable Reinforcement for Bio‐ Composites and its Property Enhancement for Key Applications: A Review

Author:

Dhakal Hom N.1ORCID,Khan Sakib Hossain1,Alnaser Ibrahim A.23,Karim Mohammad Rezaul3,Saifullah Abu1,Zhang Zhongyi1

Affiliation:

1. Portsmouth Centre for Advanced Materials and Manufacturing (PCAMM) School of Mechanical and Design Engineering University of Portsmouth Portsmouth PO1 3DJ UK

2. Department of Mechanical Engineering College of Engineering King Saud University Riyadh 11421 Saudi Arabia

3. Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering King Saud University Riyadh 11421 Saudi Arabia

Abstract

AbstractThis article presents a comprehensive review of the advancements in the use of Date Palm Fiber (DPF) reinforced composites, highlighting their mechanical, thermal, and morphological properties and the enhancements achieved through various modification techniques. Date palm fibers, a sustainable and biodegradable resource, have garnered significant interest due to their potential in reducing environmental impact across several key industries, including building and construction, automotive, and packaging. The review discusses the effects of hybrid approaches and physical and chemical treatments on the mechanical properties of DPF composites, demonstrating improvements in tensile strength, elasticity, and flexural strength through optimized fiber‐matrix bonding and reduced moisture absorption. Thermal behavior analyses through Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), and thermal conductivity underscore the composites’ suitability for applications requiring high thermal stability and conductivity for insulation applications. Morphological studies reveal that surface‐treated fibers integrate more effectively with various polymeric matrices, leading to enhanced composite performance. The practical applications of DPF composites are explored, emphasizing their role in promoting sustainable manufacturing practices. Challenges such as scalability, cost‐efficiency, and performance consistency are addressed, alongside future perspectives that suggest a promising direction for further research and technological development in the field of natural fiber composites. This review aims to solidify the foundation for ongoing advancements and increase the adoption of DPF composites in commercial applications.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3