Affiliation:
1. Department of Geography, Geomatics and Environment University of Toronto Mississauga Mississauga ON Canada
2. Department of Earth and Atmospheric Sciences, Faculty of Science University of Alberta Edmonton AB Canada
Abstract
AbstractIce wedges are a characteristic ground ice feature in permafrost regions that form primarily from the meltwater of the seasonal snowpack. Ice‐wedge oxygen and hydrogen stable isotopes have been used in winter paleotemperature reconstructions; however, until recently, the ion geochemistry of ice wedges has rarely been analyzed as a potential paleoclimate proxy. This potential is greatest for ice wedges located in coastal regions, where marine aerosols are the dominant contributor to snowpack impurities. Here, we evaluate the source and integrity of ionic concentrations of a coastal ice wedge in the northwestern Canadian Arctic (Beaufort Sea coast) to evaluate the use of ice wedges as a marine aerosol archive. Comparison to a regionally comparable snowpack reveals remarkably similar ionic concentrations for Cl−, Na+, Br−, SO42−, Ca2+, and Mg2+, with a Cl−/Na+ ratio similar to bulk seawater (1.80 vs. 1.79 in seawater), suggesting that marine aerosols, probably from sea salt aerosol production during blowing snow events over sea ice as indicated by depleted SO42− values relative to Na+, are probably the dominant contributor to ion concentrations. A previously established linear age model for the ice wedge is used to develop a continuous ion record spanning ~4,600 to ~700 yr b2k. Cl− and Na+ concentrations reveal a strong and continuous increase in concentrations over the late Holocene, thought to be driven by reduced distance‐to‐coast of up to 1 km as a result of coastal erosion. This study presents a novel interpretation of ice‐wedge geochemical data and represents the first Holocene ice‐wedge ion record.
Funder
Geological Society of America
Natural Sciences and Engineering Research Council of Canada
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献