Stem to prevent periprosthetic fracture after notching in total knee arthroplasty

Author:

Wan Qian1ORCID,Zhang Aobo1ORCID,Liu Yang1,Chen Hao1,Zhao Xue2,Han Qing1ORCID,Wang Jincheng1ORCID

Affiliation:

1. Department of Orthopedics The Second Hospital of Jilin University Changchun China

2. Department of Endocrinology and Metabolism The First Hospital of Jilin University Changchun China

Abstract

AbstractImproper osteotomy during total knee arthroplasty (TKA) can lead to anterior femoral notching, which increases the risk of periprosthetic fractures due to stress concentration. One potential solution is the addition of an intramedullary stem to the femoral component. However, the optimal stem length remains unclear. In this study, we aimed to determine the optimal stem length using finite element models. Finite element models of femurs were developed with unstemmed prostheses and prostheses with stem lengths of 50, 75, and 100 mm. Under squat loading conditions, the von Mises stress at the notch and stress distribution on four transversal sections of the femur were analyzed. Additionally, micromotion of the prosthesis–bone interface was evaluated to assess initial stability. The unstemmed prosthesis exhibited a von Mises stress of 191.8 MPa at the notch, which decreased to 43.1, 8.8, and 23.5 MPa for stem lengths of 50, 75, and 100 mm, respectively. The stress reduction on four selected femoral transversal sections compared with the unstemmed prosthesis was 40.0%, 84.4%, and 67.1% for stem lengths of 50, 75, and 100 mm, respectively. Micromotion analysis showed a maximum of 118.8 μm for the unstemmed prosthesis, which decreased significantly with the application of stems, particularly at the anterior flange. Intramedullary stems effectively reduced stress concentration at the femoral notch. The 50‐mm stem length provided the optimal combination of reduced notch stress, minimized stress‐shielding effect, and decreased micromotion at the anterior flange.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

Wiley

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3