Identification of aryl hydrocarbon receptor allosteric antagonists from clinically approved drugs

Author:

Mosa Farag E. S.1,Alqahtani Mohammed A.1,El‐Ghiaty Mahmoud A.1,Dyck Jason R. B.2,Barakat Khaled1,El‐Kadi Ayman O. S.1ORCID

Affiliation:

1. Faculty of Pharmacy and Pharmaceutical Sciences University of Alberta Edmonton Alberta Canada

2. Department of Pediatrics, Faculty of Medicine and Dentistry University of Alberta Edmonton Alberta Canada

Abstract

AbstractThe human aryl hydrocarbon receptor (AhR), a ligand‐dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA‐approved drugs binding to the allosteric site between α2 of bHLH and PAS‐A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR‐ARNT‐DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS‐B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3