Simultaneous Inference Using Multiple Marginal Models

Author:

Hothorn Ludwig A.1ORCID,Ritz Christian2,Schaarschmidt Frank3,Jensen Signe M.4,Ristl Robin5ORCID

Affiliation:

1. Leibniz University Hannover Hannover Germany

2. National Institute of Public Health, Faculty of Health Sciences University of Southern Denmark Kobenhavn K Denmark

3. Institute of Cell Biology Leibniz University Hannover Hannover Germany

4. Department of Plant and Environmental Sciences University of Copenhagen Taastrup Denmark

5. Center for Medical Data Science Medical University of Vienna Wien Austria

Abstract

ABSTRACTThis tutorial describes single‐step low‐dimensional simultaneous inference with a focus on the availability of adjusted p values and compatible confidence intervals for more than just the usual mean value comparisons. The basic idea is, first, to use the influence of correlation on the quantile of the multivariate t‐distribution: the higher the less conservative. In addition, second, the estimability of the correlation matrix using the multiple marginal models approach (mmm) using multiple models in the class of linear up to generalized linear mixed models. The underlying maxT‐test using mmm is discussed by means of several real data scenarios using selected R packages. Surprisingly, different features are highlighted, among them: (i) analyzing different‐scaled, correlated, multiple endpoints, (ii) analyzing multiple correlated binary endpoints, (iii) modeling dose as qualitative factor and/or quantitative covariate, (iv) joint consideration of several tuning parameters within the poly‐k trend test, (v) joint testing of dose and time, (vi) considering several effect sizes, (vii) joint testing of subgroups and overall population in multiarm randomized clinical trials with correlated primary endpoints, (viii) multiple linear mixed effect models, (ix) generalized estimating equations, and (x) nonlinear regression models.

Publisher

Wiley

Reference46 articles.

1. Graphical approaches for the control of generalized error rates

2. Group sequential Holm and Hochberg procedures

3. Simultaneous Test Procedures--Some Theory of Multiple Comparisons

4. A.Genz F.Bretz T.Miwa X.Mi F.Leisch andF.Scheipl “mvtnorm: Multivariate Normal and t Distributions. R Package Version 1.0‐5”2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3