Waffle‐inspired hydrogel‐based macrodevice for spatially controlled distribution of encapsulated therapeutic microtissues and pro‐angiogenic endothelial cells

Author:

Pham Chi H. L.1,Zuo Yicong1,Chen Yang1,Tran Nam M.1,Nguyen Dang T.1,Dang Tram T.1ORCID

Affiliation:

1. School of Chemical and Biomedical Engineering Nanyang Technological University (NTU) Singapore Singapore

Abstract

AbstractMacro‐encapsulation systems for delivery of cellular therapeutics in diabetes treatment offer major advantages such as device retrievability and high cell packing density. However, microtissue aggregation and absence of vasculature have been implicated in the inadequate transfer of nutrients and oxygen to the transplanted cellular grafts. Herein, we develop a hydrogel‐based macrodevice to encapsulate therapeutic microtissues positioned in homogeneous spatial distribution to mitigate their aggregation while concurrently supporting an organized intra‐device network of vascular‐inductive cells. Termed Waffle‐inspired Interlocking Macro‐encapsulation (WIM) device, this platform comprises two modules with complementary topography features that fit together in a lock‐and‐key configuration. The waffle‐inspired grid‐like micropattern of the “lock” component effectively entraps insulin‐secreting microtissues in controlled locations while the interlocking design places them in a co‐planar spatial arrangement with close proximity to vascular‐inductive cells. The WIM device co‐laden with INS‐1E microtissues and human umbilical vascular endothelial cells (HUVECs) maintains desirable cellular viability in vitro with the encapsulated microtissues retaining their glucose‐responsive insulin secretion while embedded HUVECs express pro‐angiogenic markers. Furthermore, a subcutaneously implanted alginate‐coated WIM device encapsulating primary rat islets achieves blood glucose control for 2 weeks in chemically induced diabetic mice. Overall, this macrodevice design lays foundation for a cell delivery platform, which has the potential to facilitate nutrients and oxygen transport to therapeutic grafts and thereby might lead to improved disease management outcome.

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

Reference61 articles.

1. Islet and Stem Cell Encapsulation for Clinical Transplantation

2. Nanostructured Hydrogels

3. Advances in islet encapsulation technologies

4. MoeunB Da LingS GasparriniM RutmanA NegiS ParaskevasS.Encyclopedia of tissue engineering and regenerative medicine.2019;

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3