Insights on the J‐integral expression of pure shear carbon black filled natural rubber specimen and predicting the crack growth rate using finite element method

Author:

Bhattacharyya Anandarup1ORCID,Mishra Nitish1,Dolui Tuhin1,Chanda Jagannath1ORCID,Ghosh Prasenjit1,Mukhopadhyay R.1

Affiliation:

1. Department of Tyre Mechanics Group Hari Shankar Singhania Elastomer and Tyre Research Institute Mysore India

Abstract

AbstractThe J‐integral approach manifests itself in an efficient way to determine the crack growth and failure mechanism of tread and sidewall compounds used in tyres. Therefore, for a pure shear (PS) specimen of carbon black filled natural rubber, the J‐integral formula was vivisected, and the material parameters were defined using the concepts of solid mechanics considering the planar stress conditions. Theoretical calculations, experimental observations, and finite element analysis were executed to calculate the J value for different strain percentages. Different hyperelastic material models were used to understand the hyperelastic behavior of the test compound, but Yeoh model was found to be the best fit with the least error against the experimental test data. The frequency sweep dynamic mechanical analyzer test was done to observe the viscoelastic response of the material. It was observed that the J value decreased with decreasing contour radius and had exhibited stark difference with the global tearing energy values, indicating the effects of stress softening and the dependence of J value on the elastic characteristics of the material. Further, the J value attained from finite element methods for a random strain 22% was used to predict the crack growth rate of the pre‐notched PS specimen.Highlights J‐integral formula for pure shear specimen using solid mechanics approach. J value comparison of theoretical, experimental, and finite element methods. Dependence of J value on the elastic characteristics of the material. Different hyperelastic models compared and Yeoh model chosen for analysis. Prediction of crack growth rate at a random strain percentage.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3