Malicious code detection based on many‐objective transfer model

Author:

Zhang Binquan1ORCID,Wu Di2,Lan Zhuoxuan1,Cui Zhihua1,Xie Liping1

Affiliation:

1. Shanxi Key Laboratory of Big Data Analysis and Parallel Computing Taiyuan University of Science and Technology Taiyuan China

2. College of Computer Science and Technology Beijing University of Technology Beijing China

Abstract

SummaryWith the rapid growth of malicious codes, personal privacy, and Internet security are seriously threatened. Existing transfer learning‐based malicious code detection improves detection accuracy by transferring pre‐trained neural networks. However, it cannot efficiently tune the structure and parameters of the neural networks. Here, we first propose a novel many‐objective transfer model. It mainly focuses on the detection accuracy and the total number of parameters of the neural network model. The optimal structure and parameters are captured from the pre‐trained neural network by many‐objective optimization algorithm. Second, the partitioned crossover‐mutation vector angle‐based evolutionary algorithm for unconstrained many‐objective optimization is proposed to solve the model. The algorithm performs crossover mutation operations in different ways on different regions of the candidate solution to improve population diversity. The simulation results show that the model can reduce the pre‐trained neural network structure by 49% while maintaining the accuracy in malicious code detection.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of QR Code-based Cyberattacks using a Lightweight Deep Learning Model;Engineering, Technology & Applied Science Research;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3