Sleep‐phasic heart rate variability predicts stress severity: Building a machine learning‐based stress prediction model

Author:

Fan Jingjing1,Mei Junhua2,Yang Yuan1,Lu Jiajia2,Wang Quan1,Yang Xiaoyun1,Chen Guohua2,Wang Runsen3,Han Yujia3,Sheng Rong3,Wang Wei1,Ding Fengfei4ORCID

Affiliation:

1. Department of Cardiology and Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China

2. Department of Cardiology and Department of Neurology The First Hospital of Wuhan City Wuhan China

3. Huawei Technologies Co., Ltd. Shenzhen China

4. Department of Pharmacology Shanghai Medical College Fudan University Shanghai China

Abstract

AbstractWe propose a novel approach for predicting stress severity by measuring sleep phasic heart rate variability (HRV) using a smart device. This device can potentially be applied for stress self‐screening in large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24‐h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating pattern (CAP; unstable sleep), non‐cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated the HRV indices during NCAP, CAP and REM sleep episodes using both the Holter ECG and smart‐device PPG signals. We later developed a machine learning model to predict stress severity based only on the smart device data obtained from the participants along with a clinical evaluation of emotion and stress conditions. Sleep phasic HRV indices predict individual stress severity with better performance in CAP or REM sleep than in NCAP. Using the smart device data only, the optimal machine learning‐based stress prediction model exhibited accuracy of 80.3 %, sensitivity 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can be accurately evaluated using a smart device and subsequently can be used for stress predication.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3