B0‐insensitive image navigators for prospective motion‐corrected MRS with localized second‐order shimming

Author:

Adanyeguh Isaac M.1ORCID,Park Young Woo1,Henry Pierre‐Gilles1,Deelchand Dinesh K.1ORCID

Affiliation:

1. Center for Magnetic Resonance Research and Department of Radiology University of Minnesota Medical School Minneapolis Minnesota USA

Abstract

AbstractPurposeLocalized shimming in single‐voxel MRS often results in large B0 inhomogeneity outside the volume‐of‐interest. This causes unacceptable degradation in motion navigator images. Switching back and forth between whole‐brain shim and localized shim is possible for linear shims, but not for higher‐order shims. Here we propose motion navigators largely insensitive to B0 inhomogeneity for prospective motion‐corrected MRS with localized higher‐order shimming.MethodsA recent fast high‐resolution motion navigator based on spiral‐in/out k‐space trajectories and multislice‐to‐volume registration was modified by splitting the readout into multiple shot interleaves which shortened the echo time and reduced the effect of B0 inhomogeneity. The performance of motion correction was assessed in healthy subjects in the prefrontal cortex using a sLASER sequence at 3T (N = 5) and 7T (N = 5).ResultsWith multiple spatial interleaves, excellent quality navigator images were acquired in the whole brain in spite of large B0 inhomogeneity outside the MRS voxel. The total duration of the navigator in sLASER remained relatively short even with multiple shots (3T: 10 spatial interleaves 94 ms per slice; 7T: 15 spatial interleaves 103 ms per slice). Prospective motion correction using the multi‐shot navigators yielded comparable spectral quality (water linewidth and metabolite SNR) with and without subject motion.ConclusionB0‐insensitive motion navigators enable prospective motion correction for MRS with all first‐ and second‐order shims adjusted in the MRS voxel, providing optimal spectral linewidth.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3