Evaluating Prognostic Value of Dynamics of Circulating Lactate Dehydrogenase in Colorectal Cancer Using Modeling and Machine Learning

Author:

Ding Haolun1,Yuan Min2,Yang Yaning1,Gupta Manish3,Xu Xu Steven3ORCID

Affiliation:

1. Department of Statistics and Finance, School of Management University of Science and Technology of China Hefei China

2. Department of Health Data Science Anhui Medical University Hefei China

3. Clinical Pharmacology and Quantitative Science Genmab Inc. Princeton New Jersey USA

Abstract

Pretreatment serum lactate dehydrogenase (LDH) levels have been associated with poor prognosis in several types of cancer, including metastatic colorectal cancer (mCRC). However, very few models link survival to longitudinal LDH measured repeatedly over time during treatment. We investigated the prognostic value of on‐treatment LDH dynamics in mCRC. Using data from two large phase III studies (2L and 3L+ mCRC settings, n = 824 and 210, respectively), we found that integrating longitudinal LDH data with baseline risk factors significantly improved survival prediction. Current LDH values performed best, enhancing discrimination ability (area under the receiver operating characteristic curve) by 4.5~15.4% and prediction accuracy (Brier score) by 3.9~15.0% compared with baseline variables. Combining all longitudinal LDH markers further improved predictive performance. After controlling for baseline covariates and other longitudinal LDH indicators, current LDH levels remained a significant risk factor in mCRC, increasing mortality risk by over 90% (P < 0.001) in 2L patients and 60–70% (P < 0.01) in 3L+ patients per unit increment in current log (LDH). Machine‐learning techniques, like functional principal component analysis (FPCA), extracted informative features from longitudinal LDH data, capturing over 99% of variability and allowing prediction of survival. Unsupervised clustering based on the extracted FPCA features stratified patients into three groups with distinct LDH dynamics and survival outcomes. Hence, our approaches offer a valuable and cost‐effective way for risk stratification and improves survival prediction in mCRC using LDH trajectories.

Funder

Natural Science Foundation of Anhui Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3