Biodegradable polybutylene adipate terephthalate foams: Investigating sustainability via reprocessing and green solvent

Author:

de Macedo Rooweder Lima Guilherme1,Hobbenschot Simon F. H.1,Mukherjee Adrivit1,Parisi Daniele1,Picchioni Francesco1,Bose Ranjita K.1ORCID

Affiliation:

1. Engineering and Technology Institute Groningen University of Groningen Groningen the Netherlands

Abstract

AbstractIncorporating reprocessing, recycling, and sustainable processes and materials is essential for a circular economy. Reprocessing and recycling are related since both help minimize wastage and produce a sustainable regenerative economy. However, polymers might undergo degradation depending on the recycling process, reducing their lifespan. In this study, polybutylene adipate terephthalate (PBAT) undergoes repetitive reprocessing under varied temperatures, times, and shear rates to investigate the evolution of mechanical, chemical, and thermal properties. Furthermore, foaming experiments are conducted using supercritical carbon dioxide (scCO2) on reprocessed samples to examine changes in the properties and morphology of the foam. The significance of reprocessing PBAT is divided into environmental, temperature, and processing effects. Environmental conditions impact the results where no oxidation effects are noticed in the 2‐hour test, while 7 days of humidity exposure lead to a tenfold reduction in polymer viscosity. Different processing techniques reduce the molecular weight of PBAT and alter its polydispersity. Specifically, the number average molecular weight (Mn) decreases from an initial 53 to 37 kDa after processes like extrusion or mixing. However, elongation at break and ultimate strength of PBAT remain unchanged after high‐shear extrusion processing. Additionally, PBAT foam morphology evolves over 5 cycles, leading to smaller pores and reducing compressive modulus.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3