The benefits and dangers of using machine learning to support making legal predictions

Author:

Zeleznikow John12ORCID

Affiliation:

1. Research Unit of Excellence Digital Society: Security and Protection of Rights University of Granada Granada Spain

2. Law and Technology Group, Law School La Trobe University Bundoora Victoria Australia

Abstract

AbstractRule‐based systems have been used in the legal domain since the 1970s. Save for rare exceptions, machine learning has only recently been used. But why this delay? We investigate the appropriate use of machine learning to support and make legal predictions. To do so, we need to examine the appropriate use of data in global legal domains—including in common law, civil law, and hybrid jurisdictions. The use of various forms of Artificial Intelligence, including rule‐based reasoning, case‐based reasoning and machine learning in law requires an understanding of jurisprudential theories. We will see that the use of machine learning is particularly appropriate for non‐professionals: in particular self‐represented litigants or those relying upon legal aid services. The primary use of machine learning to support decision‐making in legal domains has been in criminal detection, financial domains, and sentencing. The use in these areas has led to concerns that the inappropriate use of Artificial Intelligence leads to biased decision making. This requires us to examine concerns about governance and ethics. Ethical concerns can be minimized by providing enhanced explanation, choosing appropriate data to be used, appropriately cleaning that data, and having human reviews of any decisions.This article is categorized under: Commercial, Legal, and Ethical Issues > Legal Issues Commercial, Legal, and Ethical Issues > Fairness in Data Mining

Publisher

Wiley

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3