From reactive to proactive load balancing for task‐based parallel applications in distributed memory machines

Author:

Thanh Chung Minh1ORCID,Weidendorfer Josef2ORCID,Fürlinger Karl1ORCID,Kranzlmüller Dieter12ORCID

Affiliation:

1. MNM‐Team Ludwig‐Maximilians‐Universität München Munich Germany

2. Leibniz Supercomputing Centre (LRZ) Garching Germany

Abstract

SummaryLoad balancing is often a challenge in task‐parallel applications. The balancing problems are divided into static and dynamic. “Static” means that we have some prior knowledge about load information and perform balancing before execution, while “dynamic” must rely on partial information of the execution status to balance the load at runtime. Conventionally, work stealing is a practical approach used in almost all shared memory systems. In distributed memory systems, the communication overhead can make stealing tasks too late. To improve, people have proposed a reactive approach to relax communication in balancing load. The approach leaves one dedicated thread per process to monitor the queue status and offload tasks reactively from a slow to a fast process. However, reactive decisions might be mistaken in high imbalance cases. First, this article proposes a performance model to analyze reactive balancing behaviors and understand the bound leading to incorrect decisions. Second, we introduce a proactive approach to improve further balancing tasks at runtime. The approach exploits task‐based programming models with a dedicated thread as well, namely . Nevertheless, the main idea is to force not only to monitor load; it will characterize tasks and train load prediction models by online learning. “Proactive” indicates offloading tasks before each execution phase proactively with an appropriate number of tasks at once to a potential victim (denoted by an underloaded/fast process). The experimental results confirm speedup improvements from to in important use cases compared to the previous solutions. Furthermore, this approach can support co‐scheduling tasks across multiple applications.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3