Hydrogen Production via Methane Decomposition over Alumina Doped with Titanium Oxide‐Supported Iron Catalyst for Various Calcination Temperatures

Author:

Ahmed Hamid1,Alotibi Mohammed F.2,Fakeeha Anis H.1,Ibrahim Ahmed A.1,Abasaeed Ahmed E.1,Osman Ahmed I.3ORCID,Al‐Awadi Abdulrahman S.1,Alarifi Naif2,Al‐Fatesh Ahmed S.1

Affiliation:

1. College of Engineering King Saud University P.O. Box 800 Riyadh 11421 (Kingdom of Saudi Arabia

2. Institute of Refining and Petrochemicals Technologies King Abdulaziz City for Science and Technology (KACST) P.O. Box 6086 Riyadh 11442 Kingdom of Saudi Arabia

3. School of Chemistry and Chemical Engineering Queen's University Belfast Belfast BT9 5AG Northern Ireland (UK

Abstract

AbstractThe decomposition of methane has been chosen as an alternative method for producing hydrogen. In this study, 20 % Fe was used as the active metal part of the catalyst. To better comprehend the impact of the supporting catalytic properties, alumina and titania‐alumina composite were investigated as supports. Iron‐based catalysts were prepared by impregnation method and then calcined at different temperatures (300 °C, 500 °C, and 800 °C). The catalysts were examined at 800 °C under atmospheric pressure with a 15 mL/min total flow rate and 2 : 1 CH4 to N2 feed ratio. The textural and morphological characteristics of the fresh calcined and spent catalysts were investigated. The catalytic activity and stability data demonstrated that Fe supported over TiO2‐Al2O3 calcined at 500 °C performed the best of all evaluated catalysts with a more than 80 % hydrogen yield. The Raman spectra result showed that graphitic carbon was produced for all used titanium dioxide catalysts. Moreover, according to transmission electron microscopy (TEM) results, the carbon deposited on the catalysts’ surface is carbon nanotubes (CNT).

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3