Separation of Iron and Rare Earths from Low‐Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting‐Magnetic Separation

Author:

Hou Shaochun12,Wang Weiwei12,Zhang Bo2,Li Wenjun1,Guo Chunlei2,Li Qiang2,Li Erdou2

Affiliation:

1. School of Chemical and Biological Engineering University of Science and Technology Beijing Beijing 100083 China

2. State Key Laboratory of Bayan Obo Rare Earth Resource Researches and Comprehensive Utilization Baotou Research Institute of Rare Earths Baotou 014030 Inner Mongolia China

Abstract

AbstractLow‐intensity magnetic separation tailings (LIMS tailings) are a common by‐product obtained after magnetite magnetic separation. In this article, various techniques such as chemical analysis, X‐ray diffraction, ICP‐MS, and Mineral Liberation Analysis (MLA) were employed to investigate the LIMS tailings. The primary iron‐bearing mineral identified was hematite and rare earth minerals were monazite and bastnaesite. The main gangue species was fluorite with small amounts of dolomite and amphibole. Due to the weak magnetism of hematite and rare earth minerals, magnetic separation has low efficiency. However, magnetization roasting‐magnetic separation is an effective method to recover hematite. The present study focuses on the separation of iron and rare earth from LIMS tailings through magnetization roasting‐magnetic separation. The results demonstrate that with a roasting temperature of 650 °C, a roasting time of 60 min, a slurry concentration solid‐liquid ratio of 25 : 1, a rough magnetic field intensity of 0.16 T, and a selected magnetic field intensity of 0.10 T, the iron grade in the magnetic concentrate increases to 65.49 % and an iron recovery rate of 65.16 % can be achieved. The XRD patterns of magnetic separation concentrate show that the main mineral phases in concentrate are magnetite (Fe3O4) and fluorite (CaF2), which can be removed by grinding and reverse flotation fluorite to obtain a high‐grade iron concentrate. The REO grade of magnetic separation tailings is 11.98 %, and its recovery rate is 97.96 %. Consequently, rare earth can be effectively extracted and separated after the subsequent flotation‐leaching process.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Chemistry

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3