Compatibility–structural color property relationship of binary blends of acetylated hydroxypropyl celluloses with different degrees of acetylation

Author:

Miyagi Kazuma1ORCID

Affiliation:

1. Department of Forest Resource Chemistry Forestry and Forest Products Research Institute, Forest Research and Management Organization Tsukuba Japan

Abstract

AbstractPolymer blends containing liquid crystalline cellulose derivatives potentially enable the fabrication of optical functional materials because of their unique optical properties, that is, structural color and circular dichroism. However, studies on the effect of the compatibility of the components on the optical properties of such blends are scarce, even though component compatibility is a crucial factor for the physical properties of the polymer blends. In this study, we investigated the effect of the component compatibility on the structural color property of binary blends of acetylated hydroxypropyl celluloses (AHPCs) with different degrees of acetylation (DSAc). The spectroscopic analyses of the AHPC blends revealed that the structural color of blends with a small DSAc gap between AHPC components systematically changed with the blend composition, whereas the color of blends with a large DSAc gap was independent of the composition. Compatibility tests via spin–lattice relaxation time measurements using solid‐state nuclear magnetic resonance indicated that the different composition dependence of the color was attributed to the compatibility of the components, which varied according to the DSAc gap.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3