Recent progress in electrolyte design for advanced lithium metal batteries

Author:

Li Mingnan1,Wang Caoyu1,Davey Kenneth1,Li Jingxi1,Li Guanjie1,Zhang Shilin1,Mao Jianfeng1,Guo Zaiping1ORCID

Affiliation:

1. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide Australia

Abstract

AbstractLithium metal batteries (LMBs) have attracted considerable interest for use in electric vehicles and as next‐generation energy storage devices because of their high energy density. However, a significant practical drawback with LMBs is the instability of the Li metal/electrolyte interface, with concurrent parasitic reactions and dendrite growth, that leads to low Coulombic efficiency and poor cycle life. Owing to the significant role of electrolytes in batteries, rationally designed electrolytes can improve the electrochemical performance of LMBs and possibly achieve fast charge and a wide range of working temperatures to meet various requirements of the market in the future. Although there are some review papers about electrolytes for LMBs, the focus has been on a single parameter or single performance separately and, therefore, not sufficient for the design of electrolytes for advanced LMBs for a wide range of working environments. This review presents a systematic summary of recent progress made in terms of electrolytes, covering the fundamental understanding of the mechanism, scientific challenges, and strategies to address drawbacks of electrolytes for high‐performance LMBs. The advantages and disadvantages of various electrolyte strategies are also analyzed, yielding suggestions for optimum properties of electrolytes for advanced LMBs applications. Finally, the most promising research directions for electrolytes are discussed briefly.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3