Advanced two‐dimensional materials toward polysulfides regulation of metal–sulfur batteries

Author:

Fan Haining1,Luo Wenbin2,Dou Shixue3,Zheng Zijian1456ORCID

Affiliation:

1. School of Fashion and Textiles The Hong Kong Polytechnic University Hong Kong China

2. Section of Environmental Protection Key Laboratory of Eco‐Industry, Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy Northeastern University Shenyang China

3. Institute of Energy Materials Science (IEMS) University of Shanghai for Science and Technology Shanghai China

4. Department of Applied Biology and Chemical Technology, Faculty of Science The Hong Kong Polytechnic University Hong Kong China

5. Research Institute for Intelligent Wearable Systems The Hong Kong Polytechnic University Hong Kong China

6. Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong China

Abstract

AbstractMetal–sulfur battery, which provides considerable high energy density at a low cost, is an appealing energy‐storage technology for future long‐range electric vehicles and large‐scale power grids. One major challenge of metal–sulfur batteries is their long‐term cycling stability, which is significantly deteriorated by the generation of various soluble polysulfide intermediates and the shuttling of these intermediates through the separator. Furthermore, the intrinsically sluggish reaction kinetics associated with the poor conductivity of sulfur/sulfides family causes a large polarization in cycle behavior, which further deteriorates the electrode rechargeability. To solve these problems, the research communities have spent a great amount of effort on designing smart cathodes to delicately tailor the physiochemical interaction between the sulfur hosts and polysulfides. Here, we summarize the key progress in the development of two‐dimensional (2D) host materials showing advantageous tunability of their physiochemical properties through coordination control methods such as defect engineering, heteroatom doping, heterostructure, and phase and interface engineering. Accordingly, we discuss the mechanisms of polysulfide anchoring and catalyzing upon specific coordination environment in conjunction with possible structure–property relationships and theoretical analysis. This review will provide prospective fundamental guidance for future sulfur host design and beyond.

Publisher

Wiley

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3