ER‐stress response in retinal Müller glia occurs significantly earlier than amyloid pathology in the Alzheimer's mouse brain and retina

Author:

Palko Sarah I.1ORCID,Benoit Marc R.1,Yao Annie Y.1,Mohan Royce1,Yan Riqiang1ORCID

Affiliation:

1. Department of Neuroscience University of Connecticut Health Center Farmington Connecticut USA

Abstract

AbstractAlzheimer's Disease (AD) pathogenesis is thought to begin up to 20 years before cognitive symptoms appear, suggesting the need for more sensitive diagnostic biomarkers of AD. In this report, we demonstrated pathological changes in retinal Müller glia significantly earlier than amyloid pathology in AD mouse models. By utilizing the knock‐in NLGF mouse model, we surprisingly discovered an increase in reticulon 3 (RTN3) protein levels in the NLGF retina as early as postnatal day 30 (P30). Despite RTN3 being a canonically neuronal protein, this increase was noted in the retinal Müller glia, confirmed by immunohistochemical characterization. Further unbiased transcriptomic assays of the P30 NLGF retina revealed that retinal Müller glia were the most sensitive responding cells in this mouse retina, compared with other cell types including photoreceptor cells and ganglion neurons. Pathway analyses of differentially expressed genes in glia cells showed activation of ER stress response via the upregulation of unfolded protein response (UPR) proteins such as ATF4 and CHOP. Early elevation of RTN3 in response to challenges by toxic Aβ likely facilitated UPR. Altogether, these findings suggest that Müller glia act as a sentinel for AD pathology in the retina and should aid for both intervention and diagnosis.

Funder

National Institute on Aging

National Institute of Neurological Disorders and Stroke

National Institutes of Health

Cure Alzheimer's Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3