Hydrodynamic studies of innovative membrane reactor for enzymatic hydrolysis of lignocellulosic waste

Author:

Dąbkowska‐Susfał Katarzyna1ORCID,Lipińska Joanna1,Sobieszuk Paweł1,Kołtuniewicz Andrzej B.1

Affiliation:

1. Warsaw University of Technology Faculty of Chemical and Process Engineering Warsaw Poland

Abstract

AbstractThis paper presents the study concerning the impact of the basic operational parameters on the performance of an innovative microfiltration membrane reactor applied for enzymatic hydrolysis of lignocellulosic biomass. The concept and basic hydrodynamics of the reactor with tubular ceramic membranes and a propeller agitator were shown. Besides, the efficiency of enzymatic hydrolysis of corn straw was studied to check reactor functionality. It has been proven that the proposed reactor construction can improve the microfiltration of lignocellulosic suspension by reducing the cake layer on the membrane surface. Increasing the rotational speed of the propeller agitator also improved the filtration efficiency. The permeate flux during the microfiltration experiments was lower for smaller lignocellulose biomass fraction (D < 425 μm) when compared to the less fragmented corn straw (425 < D < 900 μm). For larger solid fractions, a stirring speed increase enhanced the separation efficiency regardless of the differences in biomass concentration. In contrast, this trend for the finer biomass fraction was only noticeable for the highest used biomass concentration (C = 2.0%). Considering the enzymatic hydrolysis of corn straw, membrane separation of reaction products positively influenced the process yield, and the results depended on the applied operational parameters.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3