Enhanced Photocatalytic Degradation of Antibiotics by Ag/BiOI/g‐C3N4 Composites

Author:

Li Ting12ORCID,Ma Mengzhou2,Wang Junhai1,Li Qiang1,Yu Yunwu2,Zou Qianqian2,Li Xinran1,Wei Xiaoyi2,Yan Tingting2,Tang Yulan3

Affiliation:

1. School of Mechanical Engineering Shenyang Jianzhu University Shenyang Liaoning 110168 China

2. School of Material Science and Engineering Shenyang Jianzhu University Shenyang Liaoning 110168 China

3. School of Municipal and Environmental Engineering Shenyang Jianzhu University Shenyang Liaoning 110168 China

Abstract

As an efficient, safe, and environmentally friendly technology, semiconductor photocatalysis has been widely used in the removal of antibiotics from wastewater. In this work, a novel Ag/BiOI/g‐C3N4 composite photocatalytic material, BiOI/g‐C3N4, g‐C3N4, and BiOI are prepared as the photocatalysts. The morphologies, chemical properties, and photocatalytic performances of the photocatalysts are characterized using scanning electron microscope, transmission electron microscope, X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectrometer, ultraviolet–visible spectroscopy (UV–Vis) diffuse reflectance spectra, and photoluminescence spectra. In addition, tetracycline hydrochloride (TC) and ceftiofur sodium aqueous solutions are used to simulate wastewater and the photocatalytic degradation performances of the photocatalysts are investigated and compared under visible light. Compared to g‐C3N4, BiOI, and BiOI/g‐C3N4, the Ag/BiOI/g‐C3N4 demonstrates superior performance, increasing the removal rates of TC and ceftiofur sodium to 85.6% and 90.2%, respectively. The photocatalytic mechanism of the Ag/BiOI/g‐C3N4 may involve the promotion of the visible light–harvesting ability and inhibition of the recombination of photogenerated electron/hole pairs. Furthermore, the primary active groups in the system are identified as superoxide radicals (·O2) and hydroxyl radicals (·OH). Herein, some valuable insights into the development of innovative photocatalytic materials are offered for the effective removal of antibiotics from water.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient photodecolorization of Congo red by CaMgO2@g-C3N4 nanocomposite;Journal of Materials Science: Materials in Electronics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3