Distinctive Features of Mesa‐Type Metal/Dielectric Surface Grating Structures Assisting Resonant Enhancement of Thermal Emission at Longitudinal–Optical Phonon Energy

Author:

Aye Hnin Lai Lai1ORCID,Lin Bojin1,Suzuki Ikuya1,Ishitani Yoshihiro1ORCID

Affiliation:

1. Graduate School of Science and Engineering Chiba University 1-33 Yayoicho, Inage-ku Chiba 263-8522 Japan

Abstract

Previously, a longitudinal optical (LO) phonon resonant emission (LORE) at 8.5 THz from Au‐GaAs surface microstructures at 630 K is reported. This emission ascribed to thermally generated electric dipoles by the coherently vibrating charges at Au/GaAs/Au interfaces shows no dependence of the emission photon energy on the emission direction, which is different from the property of surface phonon polaritons. Herein, the advantage of surface grating structures with high mesa and narrow window width is shown. The experimental emission properties of samples with 1.4–6.0 μm window width and mesa height up to 2.7 μm and finite difference time domain simulations reveal the increase in mesa height increases the electric dipole moment, while it augments the reabsorption of LORE and the background radiation subject to Planck's law for a wide window width of 6 μm. Reabsorption and the background emission can be reduced by adopting high mesa and narrow windows, which is due to the reduction of both the wire‐grid polarizer function and the distribution of the electric field beyond the LO‐phonon coherence inside the GaAs wafer. Theoretical simulation results suggest that a structure with a window width of 0.75 μm and a mesa height of 2 μm is an effective countermeasure.

Funder

Japan Society for the Promotion of Science

Iketani Science and Technology Foundation

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3